改进全局ZOA优化MVMD-SCN的锂电池SOH估算
DOI:
CSTR:
作者:
作者单位:

沈阳建筑大学大学电气与控制工程学院 沈阳 110168

作者简介:

通讯作者:

中图分类号:

TM912

基金项目:

国家自然科学基金(62003225)项目资助


Improved global ZOA optimization of MVMD-SCN for lithium battery SOH estimation
Author:
Affiliation:

School of Electrical and Control Engineering, Shenyang Jianzhu University,Shenyang 110168,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    锂电池健康状态(SOH)的准确估算对电池系统的健康管理起着重要作用,为提高SOH的估算精度,提出一种将参数优化后的多元变分模态分解(MVMD)和随机配置网络(SCN)相结合的SOH估算方法。从锂电池充放电过程中提取多个健康因子(HF)作为SOH估算模型的输入,在斑马优化算法(ZOA)全局阶段引入自适应权重和最优领域波动策略,提高其全局搜索能力,得到改进全局的斑马优化算法(IGZOA),利用它对MVMD和SCN参数进行寻优,最后在9个基准函数测试IGZOA性能,在NASA和CALCE数据集上将所提方法与不同方法进行锂电池SOH的估算对比,结果表明,所提方法的均方根误差和绝对误差的平均值分别为0.84%,0.93%,具有更高的预测精度和泛化性。

    Abstract:

    Accurate estimation of the state of health (SOH) of lithium batteries plays an important role in the health management of battery systems. In order to improve the accuracy of SOH estimation, a SOH estimation method that combines the parameter-optimized multivariate variational modal decomposition (MVMD) and stochastic configuration network (SCN) is proposed. Multiple health factors (HF) are extracted from the lithium battery charging and discharging process as inputs to the SOH model, and adaptive weights and optimal domain fluctuation strategies are introduced in the global stage of the Zebra Optimization Algorithm (ZOA) to improve its global searching ability, to obtain the Improved Global Zebra Optimization Algorithm (IGZOA), which is utilized to search for the optimization of the MVMD and the SCN parameters, and finally, the MVMD and SCN parameters are tested in nine benchmark functions IGZOA performance, the proposed combined method is compared with different methods for lithium battery SOH estimation on NASA and CALCE datasets, and the results show that the average values of root mean square error and absolute error of the proposed method are 0.84% and 0.93%, respectively, and the proposed method has higher prediction accuracy and generalizability.

    参考文献
    相似文献
    引证文献
引用本文

郭喜峰,黄裕海,单丹,原宝龙,宁一.改进全局ZOA优化MVMD-SCN的锂电池SOH估算[J].电子测量技术,2024,47(5):22-30

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-05
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知