基于原型嵌入图网络的小样本图像分类
DOI:
CSTR:
作者:
作者单位:

1.贵州民族大学数据科学与信息工程学院 贵阳 550025; 2.贵州省模式识别与智能系统重点实验室贵州民族大学 贵阳 550025

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

国家自然科学基金(62241206)、贵州省科技计划项目(黔科合基础-ZK[2022]一般195,黔科合基础-ZK[2023]一般143,黔科合基础-ZK[2022]一般 550,黔科合平台人才-ZCKJ[2021]007)、贵州省青年科技人才成长项目((黔教合KY字[2021]104)、贵州省教育厅自然科学研究项目(黔教技[2023]012号,黔教技[2022]015号,黔教技[2023]061号)、贵州省教育厅青年科技人才成长项目(黔教合KY字[2021]115,黔教合KY字[2021]110)、贵州省深化新时代教育评价改革试点“教学过程质量评价”、贵州省模式识别与智能系统重点实验室开放课题(GZMUKL[2022]KF01)项目资助


Few-shot image classification based on prototype embedding graph network
Author:
Affiliation:

1.School of Data Science and Information Engineering, Guizhou Minzu University,Guiyang 550025, China; 2.Key Laboratory of Pattern Recognition and Intelligent System, Guizhou Minzu University,Guiyang 550025, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对在小样本图像分类中传统骨干卷积网络进行特征提取时会有上下文信息单一和感受野受限以及边特征相似度度量缺乏全局性问题,本文提出了一种基于原型嵌入图网络的小样本图像分类算法。首先,将CBAM产生的权重值与ASPP以不同采样率获取的不同尺度特征进行相乘的特征作为图网络的节点嵌入特征。然后,采用原型网络的方法在度量模块中构建了原型节点,使得成对节点之间的相似性计算转化为单个节点与原型节点相似性的和计算,将得到的相似度作为边特征输入图神经网络。最后,利用双图结构在多个更新代后将标签信息从有标签样本传播到无标签样本。在以ResNet-12为骨干卷积网络的算法分类任务中,本文在miniImageNet、tieredImageNet、CUB-200-2011和CIFAR-FS 4个数据集上的5-way 1-shot的任务分类准确率分别达到了71.47%、75.41%、86.21%和79.84%,在以Conv-4作为骨干卷积网络中,本文提出的算法在5-way 1-shot和5-way 5-shot任务中都优于现有的图网络方法。

    Abstract:

    Traditional backbone convolutional networks for feature extraction in few-shot image classification suffer from the problems of single context information, limited receptive field, and lack of global edge feature similarity measurement. In this paper, we propose a few-shot image classification algorithm based on prototype embedding graph network. First, the feature obtained by multiplying the weight values generated by CBAM with the features of different scales obtained by ASPP at different sampling rates is used as the node embedding feature of the graph network. Then, the prototype nodes are constructed in the measurement module using the prototype network method, transforming the similarity calculation between paired nodes into the sum of the similarity between a single node and the prototype node, and using the obtained similarity as the edge feature input to the graph neural network. Finally, the label information is propagated from labeled samples to unlabeled samples through the dual graph structure after multiple update iterations. In the classification task using ResNet-12 as the backbone convolutional network, our algorithm achieves classification accuracies of 71.47%, 75.41%, 86.21%, and 79.84% on the miniImageNet, tieredImageNet, CUB-200-2011, and CIFAR-FS datasets, respectively, for the 5way-1shot task. In the backbone convolutional network using Conv-4, our proposed algorithm outperforms existing graph network methods in both 5way-1shot and 5way-5shot tasks.

    参考文献
    相似文献
    引证文献
引用本文

陈望,李志玲,王前,包春梅,王林.基于原型嵌入图网络的小样本图像分类[J].电子测量技术,2024,47(5):133-141

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-05
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知