基于改进YOLOv5的印刷电路板缺陷检测
DOI:
CSTR:
作者:
作者单位:

1.天津理工大学电气工程与自动化学院 天津 300380; 2.天津鸿磁速保科技有限公司 天津 300400

作者简介:

通讯作者:

中图分类号:

TP391.9

基金项目:

国家自然科学基金(61502340)、天津市自然科学基金(18JCQNJC01000)、天津理工大学教学基金(YB20-05)、天津市复杂系统控制理论与应用重点实验室开放基金(TJKL-CATCS-201907)项目资助


Printed circuit board defect detection based on improved YOLOv5
Author:
Affiliation:

1.School of Electrical Engineering and Automation, Tianjin University of Technology,Tianjin 300380, China; 2.Tianjin Hongci Subao Technology Co., Ltd.,Tianjin 300400, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决印刷电路板缺陷检测中缺陷类别易混淆,缺陷目标微小难以检测的问题,提出了一种改进的YOLOv5检测模型。在骨干网络引入SwinTransformer架构,获取局部和全局信息的多尺度特征。增加一个针对小目标的预测特征层,新的多尺度特征融合和检测结构使模型学习更加全面的特征信息。使用ECIoU_Loss作为损失函数,实现电路板缺陷检测速度和准确率协同优化。实验结果表明,改进后的YOLOv5模型在PCB Defect数据集上的平均准确率为98.7%,达到了99.7%的预测精确率和97.4%的召回率,比当前主流的检测模型性能更优越,改进后的YOLOv5模型能更有效的对电路板缺陷进行分类和定位。

    Abstract:

    To address the challenges of confusion among defect categories and the difficulty in detecting small defect targets in printed circuit board defect detection, an improved YOLOv5 detection model was proposed. The Swin-Transformer is incorporated into the backbone network to extract multi-scale features, capturing both local and global information. A prediction feature layer is added specifically for small targets, and the new multi-scale feature fusion and detection structure enable the model to learn more comprehensive feature information. The ECIoU_Loss is employed as the loss function, facilitating collaborative optimization between detection speed and accuracy in circuit board defect detection. Experimental results demonstrate that the improved YOLOv5 model achieves a mean average precision of 98.7% on the PCB Defect dataset, with a precision of 99.7% and a recall of 97.4%. These performance metrics outperform current mainstream detection models, showcasing the improved YOLOv5 model's effectiveness in classifying and localizing circuit board defects.

    参考文献
    相似文献
    引证文献
引用本文

李大华,徐傲,王笋,李栋,于晓.基于改进YOLOv5的印刷电路板缺陷检测[J].电子测量技术,2023,46(23):112-119

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-21
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知