少标签下油浸式变压器双层故障诊断模型
DOI:
CSTR:
作者:
作者单位:

1.新疆大学电气工程学院 乌鲁木齐 830000; 2.新疆送变电有限公司 乌鲁木齐 830000

作者简介:

通讯作者:

中图分类号:

TM411

基金项目:

新疆维吾尔自治区自然科学基金青年项目(2022D01C89)、国家自然科学基金(52065064,51967019)项目资助


Transformer fault diagnosis method based on GBDT and K-means gain clustering
Author:
Affiliation:

1.School of Electrical Engineering,Xinjiang University,Urumqi 830000,China; 2.Xinjiang Power Transmission and Transformation Co., Ltd.,Urumqi 830000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对油浸式变压器数据样本标记困难,有标签样本数据量较少,传统故障诊断方法精度低的问题,提出了基于GBDT与Kmeans增益聚类的少标签下油浸式变压器双层故障诊断模型。首先,采用SAE对表征变压器状态的高维特征气体进行降维,去除冗余信息,得到包含变压器运行状态的低维特征向量作为后续分类器的输入;其次,构建双层故障诊断模型;针对无标签样本,引入GBDT方法作为所提模型首层,获取无标签样本的伪标签;为进一步提高诊断精度,提出基于无标记样本伪标签的Kmeans聚类增益,作为新的特征向量,输入末层模型Kmeans用以实现二次诊断的目的。实验分析表明,在少标签状态下,所提的方法可有效提升变压器故障诊断精度,相较于传统方法,在诊断精度上至少提升了6%。为少标签下的油浸式变压器故障诊断提供了新的思路。

    Abstract:

    In view of the difficulties in labeling the data samples of oil immersed transformers, the small amount of labeled samples and the low accuracy of traditional fault diagnosis methods, a twolayer fault diagnosis model for oil immersed transformers with few labels based on GBDT and Kmeans gain clustering is proposed. Firstly, a stacked autoencoder is used to reduce the dimension of the highdimensional characteristic gas characterizing the transformer state, remove redundant information, and obtain the lowdimensional characteristic vector containing the transformer operating state as the input of the subsequent classifier. Secondly, a twolayer fault diagnosis model is constructed; For unlabeled samples, the GBDT method is introduced as the first layer of the proposed model to obtain the false labels of unlabeled samples. In order to further improve the diagnosis accuracy, the Kmeans clustering gain based on the false label of unlabeled samples is proposed as a new feature vector, which is input into the end layer model Kmeans to realize the secondary diagnosis. Experimental analysis shows that the proposed method can effectively improve the accuracy of transformer fault diagnosis under the condition of few tags, and the diagnosis accuracy is improved by at least 6% compared with other methods. It provides a new idea for fault diagnosis of oil immersed transformer with few labels.

    参考文献
    相似文献
    引证文献
引用本文

汤茂祥,王聪,朱超平,马萍,王伟.少标签下油浸式变压器双层故障诊断模型[J].电子测量技术,2023,46(16):112-118

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-04
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知