基于深度学习的元器件视觉识别和定位技术
DOI:
CSTR:
作者:
作者单位:

江苏大学机械工程学院 镇江 212013

作者简介:

通讯作者:

中图分类号:

TP391;TH166

基金项目:

国家自然科学基金(51875266)项目资助


Component vision recognition and location technology based on deep learning
Author:
Affiliation:

School of Mechanical Engineering, Jiangsu University,Zhenjiang 212013, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决当前装配机器人视觉系统对元器件误检率高、效率低、难获取有效定位信息的问题,提出了一种基于深度学习的元器件视觉识别和定位方法。首先,设计基于深度聚合和解耦头的高精度检测算法,提高元器件识别和主体检测的精度;其次,设计标注和判定规则,细化定位主体轮廓和抓取点;最后,设计基于网络剪枝的轻量化检测算法,实现模型压缩,提高引脚检测和装配点定位的效率。研究结果表明:该方法在元器件的识别和定位上取得了较好表现,类别识别平均错误率仅为0.27%,计算量减少了29.8%,参数量减少了22.7%,并将传统的元器件轮廓检测扩展到抓取点和装配点定位,得到丰富的类别和位置指引信息,为工业机器人精准、可靠、稳定地抓取和装配做好基础。

    Abstract:

    In order to solve the current assembly robot vision system’s problems of high false detection rate, low efficiency, and difficulty in obtaining effective positioning information. a component vision recognition and positioning method based on deep learning was proposed. Firstly, a high-precision detection algorithm based on deep aggregation and decoupling head was designed to improve the accuracy of component identification and subject detection. Secondly, the rules of labeling and determination were designed, and the position subject outlines and grasping points were refined. Lastly, a lightweight detection algorithm based on network pruning was designed to accomplish model compression and improve the efficiency of pin detection and assembly point positioning. The research results show that the method has achieved better performance in the identification and positioning of components. The average error rate of category recognition is merely 0.27%. The calculation is reduced by 29.8%, and the volume of parameters decreased by 22.7%. Through this method, traditional component contour detection is extended to grasp point and assembly point positioning to obtain abundant category and position guideline information, laying a foundation for industrial robots to grasp and assemble accurately, reliably and stably.

    参考文献
    相似文献
    引证文献
引用本文

雷文桐,顾寄南,胡君杰,高伟.基于深度学习的元器件视觉识别和定位技术[J].电子测量技术,2023,46(8):65-73

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-07
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知