采用样本自动选择的建筑物遥感场景分类方法
DOI:
CSTR:
作者:
作者单位:

沈阳建筑大学交通与测绘工程学院 沈阳 110000

作者简介:

通讯作者:

中图分类号:

P237

基金项目:

国家自然科学基金(42101353)、教育部人文社会科学研究一般项目(21YJC790129)、辽宁省教育厅基本科研项目(LJKMZ20220946)资助


Automatic sample selection method for building remote sensing scene classification
Author:
Affiliation:

School of Transportation and Geomatics Engineering, Shenyang Jianzhu University,Shenyang 110000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前遥感图像建筑物场景分类方法多采用人工标注样本,标注过程需要大量时间。针对该问题,提出了一种采用样本自动选择的高分遥感建筑物场景分类方法。首先,建立光谱特征、几何特征和深度特征的多维高分遥感图像影像对象特征空间;其次,采用决策树初步提取建筑物,构建建筑物场景密度直方图;然后,采用自然间断法对建筑物密度分级,并采用比例法分别在每类场景中提取部分场景图像作为训练样本;最后,采用ResNet50网络对建筑物场景分类。以辽宁省沈阳市浑南区为研究区域和Google Earth遥感图像为实验数据,实验结果表明本文方法能够实现非监督场景分类,总体分类精度和Kappa系数分别为089和082,较原有样本选择方法分类精度提高了3%和8%。

    Abstract:

    At present, most of the building scene classification methods in remote sensing images use manual annotation method, which requires a lot of time. To solve this problem, this paper proposes a high resolution remote sensing building scene classification method using automatic sample selection. Firstly, the feature space of multidimensional highresolution remote sensing image with spectral features, geometric features and depth features is established. Secondly, the buildings were initially extracted by decision tree, and the scene density histogram of buildings was constructed. Then, the natural discontinuity method was used to classify the building density, and the proportion method was used to extract some scene images from each type of scene as training samples. Finally, ResNet50 network is used to classify building scenes. Taking Hunnan District of Shenyang City, Liaoning Province as the study area and Google Earth remote sensing images as the experimental data, the experimental results show that the proposed method can achieve unsupervised scene classification, and the overall classification accuracy and Kappa coefficient are 089 and 082, respectively, which are improved by 3% and 8% compared with the original sample selection method.

    参考文献
    相似文献
    引证文献
引用本文

郭玉文,孙立双,谢志伟,史振国.采用样本自动选择的建筑物遥感场景分类方法[J].电子测量技术,2023,46(16):158-164

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-04
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知