基于3DCNN的驾驶员细微动作识别
DOI:
CSTR:
作者:
作者单位:

河北工业大学机械工程学院 天津 300000

作者简介:

通讯作者:

中图分类号:

TP391.4;U463.6

基金项目:

天津市新一代人工智能科技重大专项(18ZXZNGX00230)资助


Driver subtle action recognition based on 3DCNN
Author:
Affiliation:

College of Mechanical Engineering,Hebei University of Technology, Tianjin 300000,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对驾驶员相似的背景下的细微动作的动作识别,提出了一种基于X3D卷积神经网络X3D-M-GC-AE。通过引入轻量级的自注意力网络GCNet,提高对时间和空间关键特征的关注度,不引入参数量的情况下,提高检测精度;设计了一种运动增强模块,使网络对时序上的运动信息更加敏感;引入知识蒸馏,将X3D-XL作为教师网络,X3D-M-GC-AE作为学生网络,可以使用较少的参数量和计算量,达到可以实车应用的程度。实验结果表明教师网络测试精度最高可以达到75.56%,学生网络最高可以达到71.13%,该框架在车载硬件设备要求较低的情况下能够实现较高精度的检测效果。

    Abstract:

    Aiming at the action recognition of subtle actions in the similar background of drivers, X3D-M-GC-AE based on X3D network is proposed. By introducing the lightweight self-attention network GCnet, the attention to key features in time and space is improved, and the detection accuracy is improved without increasing parameter quantities. Action enhancement block is designed to make the network more sensitive to the action information in time series. Introducing knowledge distillation, taking X3D-XL as the teacher network and X3D-M-GC-AE as the student network, so that X3D-M-GC-AE can be used in real vehicles with less parameters and calculations. The experimental results show that the maximum test accuracy of teacher network can reach 75.56%, and that of student network can reach 71.13%. This framework can achieve high-precision detection results in the case of low requirements for vehicle hardware equipment.

    参考文献
    相似文献
    引证文献
引用本文

秦康,张小俊,张明路,杨亚昆.基于3DCNN的驾驶员细微动作识别[J].电子测量技术,2023,46(8):51-58

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-07
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知