基于ISSA-VMD和二代小波的sEMG信号降噪研究
DOI:
CSTR:
作者:
作者单位:

1.湖北省输电线路工程技术研究中心(三峡大学) 宜昌 443002; 2.三峡大学电气与新能源学院 宜昌 443002; 3.国网金华供电公司 金华 321000

作者简介:

通讯作者:

中图分类号:

TN911.7;TP212.3

基金项目:

国家自然科学基金(51807110)项目资助


Research of noise reduction about sEMG signal based on ISSA-VMD and second generation wavelet
Author:
Affiliation:

1.Hubei Provincial Engineering Technology Research Center for Power Transmission Line (China Three Gorges University), Yichang 443002, China; 2.College of Electrical Engineering & New Energy, China Three Gorges University, Yichang 443002, China; 3.State Grid Jinhua Power Supply Company, Jinhua 321000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    表面肌电(sEMG)信号是一种可以有效表征肌肉活动的弱生理信号,采集过程中易受到多种噪声干扰。为解决变分模态分解(VMD)参数经验设置的问题,并进一步消除sEMG信号中的噪声,提出了一种基于改进麻雀算法(ISSA)优化VMD和二代小波阈值法相结合的sEMG信号降噪法。首先,采用基于改进T混沌映射、自适应权重和麻雀数目动态变化的改进麻雀算法并将品质因子作为目标函数对VMD进行参数寻优,然后利用ISSA优化的VMD分解对预处理过的sEMG信号进行分解,通过谱相关分析区分信号分量和噪声分量,最后对信号分量进行二代小波阈值法降噪,得到降噪信号。结果表明:ISSA较SSA有效提高了VMD参数寻优能力;在不同噪声等级下,基于ISSA-VMD和二代小波硬阈值的降噪法的降噪性能优于二代小波和ISSA-VMD;基于ISSA-VMD与二代小波硬阈值降噪法处理实际sEMG信号,能有效去除噪声。

    Abstract:

    Surface Electromyography (sEMG) signal is a kind of weak physiological signal that effectively represent muscle activities; however, it is susceptible to many noise interferences in the acquisition process. In order to adaptively set key parameters of Variational Mode Decomposition (VMD) and further eliminate the noises in the sEMG signal, a sEMG signal denoising method based on Improved Sparrow Search Algorithm (ISSA) optimized VMD and second-generation wavelets threshold is proposed in this paper. Firstly, The VMD parameters setting was optimized by adopting ISSA based on improved tent chaotic mapping, adaptive weight and dynamic change of the population number of sparrows, and quality factors were used as objective function. The optimized VMD was used to decompose the pre-treated sEMG signal, and the signal and noise components were distinguished by the spectrum correlation analysis. Finally, the signal component was denoised by the second-generation wavelet threshold to obtain the denoising signal. The results are shown that: ISSA can effectively improve parameter optimization ability for VMD compared with SSA, the denoising method for sEMG signal based on ISSA-VMD and second-generation wavelet hard threshold has better denoising performance than other methods under different noise levels. For actual sEMG signals, the method based on ISSA-VMD and the second-generation wavelet hard threshold can effectively remove noise.

    参考文献
    相似文献
    引证文献
引用本文

吴田,蔡豪,梁加凯,徐勇,黄梦婷,王南极.基于ISSA-VMD和二代小波的sEMG信号降噪研究[J].电子测量技术,2023,46(2):93-100

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-11
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知