双注意力机制与改进U-Net的水下图像增强
DOI:
CSTR:
作者:
作者单位:

1.沈阳理工大学信息科学与工程学院 沈阳 110159; 2.辽宁工程技术大学电子与信息工程学院 葫芦岛 125105

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家重点研发计划项目(2018YFB1403303)资助


Underwater image enhancement based on dual attention mechanism and improved U-Net
Author:
Affiliation:

1.School of Information Science and Engineering, Shenyang Ligong University,Shenyang 110159, China; 2.School of Electronic and Information Engineering, Liaoning Technical University, Huludao 125105, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有的水下增强算法存在色彩失真和去雾效果不好等问题,本文提出基于双注意力机制与改进U-Net的水下图像增强算法。首先采用颜色校正模块对红、绿、蓝三通道进行处理,减少色偏的影响;然后将通道注意力、空间注意力与U-Net网络相融合,对颜色校正后的图像进行去雾、去噪等处理,保留图像纹理细节的同时,实现对比度的增强;最后采用金字塔融合模块将不同分辨率的图像特征进行融合,获得视觉上清晰的图像。实验结果表明,基于UIEBD和UFO-120测试集,UCIQE、NIQE、SURF以及信息熵的平均值分别为0.608 1、4.440 3、31.5和7.649 5,所提算法在主观视觉质量和客观评价指标上都优于其他经典及新颖算法,增强后水下图像去雾效果良好且在颜色校正方面也具有明显优势,显著提高了水下图像的视觉质量。

    Abstract:

    The existing underwater enhancement algorithms have some problems such as color distortion and bad defogging effect. Therefore, this paper proposes an underwater image enhancement algorithm based on dual attention mechanism and improved U-Net. Firstly, the color correction module is used to process the red, green and blue channels to reduce the influence of color deviation. Then, the channel attention and spatial attention are fused with the U-Net network, and the images after color correction are defogged and denoised to retain the texture details of the images and enhance the contrast. Finally, the pyramid fusion module is used to fuse the image features with different resolutions to obtain a clear visual image. The experimental results show that based on UIEBD and UFO-120 test sets, the average values of UCIQE, NIQE, SURF and information entropy are 0.608 1, 4.440 3, 31.5 and 7.649 5, respectively. The proposed algorithm is superior to other classical and novel algorithms in subjective visual quality and objective evaluation indexes. The enhanced underwater image has good defogging effect and obvious advantages in color correction, which significantly improves the visual quality of underwater images.

    参考文献
    相似文献
    引证文献
引用本文

王海涛,林森,陶志勇.双注意力机制与改进U-Net的水下图像增强[J].电子测量技术,2023,46(1):181-187

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-11
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知