基于机器学习的有色金属冶炼工序识别
DOI:
CSTR:
作者:
作者单位:

1.湖北工业大学 电气与电子工程学院 武汉 430068; 2.襄阳湖北工业大学产业研究院 襄阳 441100

作者简介:

通讯作者:

中图分类号:

TM714

基金项目:

国家自然科学基金资助项目(61903129).


Non-ferrous metal smelting process identification based on machine learning
Author:
Affiliation:

1. School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, China; 2. Xiangyang Industrial Institute of Hubei University of Technology, Xiangyang 441100, China.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为实现生产工序的准确识别,提出基于机器学习的工序识别模型,分别选取时间卷积网络、长短期记忆网络、支持向量机构建工序识别模型,并结合某钛金属冶炼企业生产能耗数据对模型进行测试验证。首先对历史功率及工序数据进行预处理,然后根据生产特征构造用于模型训练及测试数据集,最后结合数据集对模型进行训练和测试。结果表明基于时间卷积网络的识别模型具有较高的工序识别准确率,针对测试集的工序识别准确率达96.94%。

    Abstract:

    In order to realize the accurate identification of production processes, a process identification model based on machine learning was proposed. Time convolution network, long and short term memory network and support vector machine were selected to build the process identification model, and the model was tested and verified with the production energy consumption data of a titanium metal refining enterprise. Firstly, the historical power and process data were preprocessed, and then the model training and testing data set was constructed according to the production characteristics. Finally, the model was trained and tested based on the data set. The results shows that the recognition model based on time convolution network has a high accuracy of process identification, and the accuracy of process identification for test sets reaches 96.94%.

    参考文献
    相似文献
    引证文献
引用本文

汪繁荣,方祖春,刘宇航,汪筠涵.基于机器学习的有色金属冶炼工序识别[J].电子测量技术,2022,45(23):181-186

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-08
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知