基于改进FCN双路径特征融合的局部放电图谱识别
DOI:
CSTR:
作者:
作者单位:

1.华北电力大学计算机系 保定 071003; 2.复杂能源系统智能计算教育部工程研究中心 保定 071003

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:


Partial discharge pattern recognition based on improved FCN dual path feature fusion
Author:
Affiliation:

1.School of Control and Computer Engineering,North China Electric Power University, Baoding 071003, China; 2.Engineering Research Center of Intelligent Computing for Complex Energy Systems, Ministry of Education,Baoding 071003, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对电力设备局部放电图谱的识别问题,提出一种改进交叉熵损失函数的双路径全卷积神经网络模型。使用局放图谱作为模型输入,采用双路径的方式,两路使用不同大小卷积核分别提取图谱较深层和较浅层特征,然后进行特征融合。使用卷积层代替全连接层,更多保留局放特征间的空间关联性。改进的交叉熵损失函数可以使模型更适用于数据集样本不均衡的情况。实验结果表明,改进FCN双路径特征融合识别方法准确率达到99.31%,可以准确识别局放图谱,且模型参数量更小。

    Abstract:

    A fully convolutional dual-path neural network model with improved cross-entropy loss function is proposed to solve the problem of identifying partial discharge maps of electrical equipment. Using the partial discharge map as the model input, the deep and shallow features of the map are extracted by two channels using different size convolution kernels, and then performing feature fusion. The convolutional layer is used instead of the fully connection layer to preserve more spatial correlation between PD features. The improved cross-entropy loss function can make the model more suitable for the situation of imbalanced datasets. The experimental results show that the accuracy of the improved FCN dual-path feature fusion recognition method reaches 99.31%, which can accurately identify the partial discharge map, and the amount of model parameters is smaller.

    参考文献
    相似文献
    引证文献
引用本文

金玉,袁和金.基于改进FCN双路径特征融合的局部放电图谱识别[J].电子测量技术,2022,45(24):132-136

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-08
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知