基于忆阻器卷积神经网络的表情识别
DOI:
CSTR:
作者:
作者单位:

1.南京信息工程大学 电子与信息工程学院 南京 210044;2.江苏省大气环境与装备技术协同创新中心 南京 210044

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

江苏高校优势学科III期建设工程资助项目,国家自然科学基金(61871230), 江苏省自然科学基金(BK20181410)


Facial expression recognition based on memristor convolutional neural network
Author:
Affiliation:

1.School of Electronic & Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; 2.Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment, Nanjing 210044, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    忆阻器具有纳米级尺寸、低功耗、类似神经突触等优点,在神经计算、图像分类等领域具有广阔的应用前景。本文提出了一种基于忆阻器卷积神经网络的面部表情识别方法,首先基于忆阻器构建了ResNet卷积神经网络,并对ResNet网络进行剪枝操作,然后将ResNet模型的所有卷积层以及全连接层的权重映射为忆阻器十字交叉阵列中忆阻器的忆导值。实验结果显示忆阻器卷积神经网络模型在FER2013数据集上的识别准确率为63.82%,在CK+数据集上的识别准确率为93.95%。相比与原卷积网路,准确率损失仅分别为0.31%和0.76%。最后测试了忆阻器的非理想特性对准确率的影响,为忆阻器神经网络的实际部署提供参考。

    Abstract:

    Memristors have the advantages of nanoscale size, low power consumption and similar to neural synapses, etc., and have broad application prospects in neural computing, image classification and other fields. In this paper, a facial expression recognition method based on memristor-based convolutional neural network is proposed. First, a memristor-based ResNet convolutional neural network is constructed and the ResNet network is pruned. Then the weights of all convolutional layers and fully connected layers of the ResNet model are mapped as the memductance values of memristors in the memristive crisscross array. The experimental results show that the recognition accuracy of the memristor-based convolutional neural network model on the FER2013 dataset is 63.82%, and the recognition accuracy on the CK+ dataset is 93.95%. Compared with the original convolutional network, the accuracy loss is only 0.31% and 0.76% respectively. Finally, the influence of the non-ideal characteristics of the memristor on the accuracy is tested, which provides a reference for the actual deployment of the memristor-based neural network.

    参考文献
    相似文献
    引证文献
引用本文

赵益波,蒋 文,孟若禹,李业宁.基于忆阻器卷积神经网络的表情识别[J].电子测量技术,2022,45(16):93-101

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-07
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知