基于改进YOLOv3的酒瓶盖瑕疵检测算法
DOI:
CSTR:
作者:
作者单位:

1. 湖北工业大学理学院,湖北 武汉 430068;2. 湖北工业大学电气与电子工程学院,湖北 武汉 430068

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

国家教育部大学生创新创业计划(201810500024)、湖北省高等学校哲学社会科学研究重大项目(21ZD054)、湖北工业大学绿色科技引领计划(CPYF2018009)资助


Defect detection for wine bottle caps based on improved YOLOv3
Author:
Affiliation:

1.School of Science, Hubei University of Technology, Wuhan, Hubei 430068, China 2.School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan, 430068, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在智能酿酒工艺中,对酒瓶外包装进行瑕疵检测是质检环节重要的一环。本文基于改进YOLOv3目标检测算法,将其应用到酒瓶盖瑕疵检测的环节中,最终结果符合工厂生产线对瑕疵检测精度和速度的要求。该方法在YOLOv3主干Backbone网络的残差模块中引入SENet Module,应用注意力机制加强对特征的提取,在Neck特征金字塔网络中引入自适应特征融合网络(ASFF),融合不同尺度的特征信息,提高模型的预测能力,同时引入Focus Loss损失函数解决正负样本不均衡问题,加速损失函数的收敛速度。改进后的YOLOv3-ASFL在自制酒瓶盖瑕疵数据集上mAP达到92.33%,单张图像检测时间仅为0.085s,比原始YOLOv3在相同数据集上的mAP提升了6.59%。改进后的YOLOv3模型性能更好,符合酒瓶包装生产线对瑕疵检测的需求。

    Abstract:

    Defect detection on outer packaging of wine bottles is of importance. A improved YOLOv3 algorithm is proposed to deal with that problem. The final result shows the improved YOLOv3 meets the production line’s requirements for accuracy and speed well. First, The SENet Module is introduced into YOLOv3 backbone network’s residual block, applying the attention mechanism to enhance the feature extraction. Second, The Adaptive Feature Fusion Network (ASFF) is introduced into the Feature Pyramid Network to fuse the feature information in different scales, which enhance the predictive ability of the model. Third, The Focus Loss function is used to solve the problem of unbalanced positive and negative samples, which will help accelerate the convergence speed of the loss function. The improved YOLOv3-ASFL achieves a mAP up to 92.33% in the self-made wine bottle cap dataset, which is 6.59% higher than the original YOLOv3, and the single image detection time is only 0.085s. The improved YOLOv3 model has a better performance and meets the needs of the wine bottle packaging production line for defect detection.

    参考文献
    相似文献
    引证文献
引用本文

段禄成,谭保华,余星雨.基于改进YOLOv3的酒瓶盖瑕疵检测算法[J].电子测量技术,2022,45(15):130-137

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-08
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知