融合深度可分离小卷积核和CBAM的改进CNN故障诊断模型
DOI:
CSTR:
作者:
作者单位:

1.昆明理工大学 信息工程与自动化学院 昆明650500; 2.昆明理工大学云南省人工智能重点实验室 昆明650500

作者简介:

通讯作者:

中图分类号:

TH213. 3;TN911

基金项目:

国家自然科学基金(51765002,61663017);云南省科技计划项目(2019FD042)


Fusion depth separable small convolution kernel and CBAM improved CNN fault diagnosis model
Author:
Affiliation:

1.Faculty of Information Engineering and Automation,Kunming University of Science and Technology, Kunming 650500,China; 2.Yunnan Key Laboratory of Artificial Intelligence, Kunming University of Science and Technology , Kunming 650500,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决最大池化丢失信息和平均池化模糊特征的问题,同时提高模型时频图像识别效率,降低模型复杂度,提出一种采用深度可分离小卷积核进行降采样和CBAM的CNN网络模型对轴承进行故障诊断。首先,在除最后一层的池化层中,使用深度可分离小卷积层代替池化层,实现池化层的降采样功能。其次,在最后一层池化层引入CBAM,对时频图像所表征的故障特征给予更多的关注,以提高模型计算效率。再次,使用全局平均池化代替传统全连接层,进一步减少模型参数数量。最后,利用CWRU轴承振动数据和自制实验平台数据验证所提方法在滚动轴承故障诊断方面的有效性和可行性。实验结果表明,融合深度可分离小卷积核和CBAM改进的CNN模型有效减少了模型需要的训练参数和计算量,且在识别准确率方面取得了更优的性能。

    Abstract:

    In order to solve the problem of maximum pooling loss of information and average pooling fuzzy features, improve the time-frequency image recognition efficiency of the model and reduce the model complexity, A CNN network model using a deep detachable small Convolutional kernel for down-sampling and CBAM is proposed for fault diagnosis of bearings. Firstly, in the pooling layer except the last layer, the depth separable small convolution layer is used to replace the pooling layer to realize the down-sampling function of the pooling layer. Secondly, CBAM is introduced in the last pooling layer to pay more attention to the fault features represented by time-frequency images to improve the computational efficiency of the model. Thirdly, global average pooling is used instead of traditional full connection layer to further reduce the number of model parameters. Finally, CWRU bearing vibration data and self-made experimental platform data were used to verify the validity and feasibility of the proposed method in rolling bearing fault diagnosis. Experimental results show that the fusion depth separable small convolution kernel and CBAM improved CNN model can effectively reduce the training parameters and computation required by the model, and achieve better performance in recognition accuracy.

    参考文献
    相似文献
    引证文献
引用本文

于洋,马军,王晓东,朱江艳,刘桂敏.融合深度可分离小卷积核和CBAM的改进CNN故障诊断模型[J].电子测量技术,2022,45(6):171-178

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-16
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知