基于迁移学习的轻量化YOLOv2口罩佩戴检测方法
DOI:
CSTR:
作者:
作者单位:

桂林理工大学机械与控制工程学院,广西桂林 541006

作者简介:

通讯作者:

中图分类号:

TP391.9

基金项目:

国家自然科学基金项目(61741303)


Light-YOLOv2 Mask Wearing Detection Method Based on Transfer Learning
Author:
Affiliation:

College of mechanical and control engineering, Guilin University of technology, Guangxi Guilin 541006

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对当前佩戴口罩数据集样本数量较少、硬件条件受限的情况下,本文提出了一种基于迁移学习的轻量化YOLOv2口罩佩戴检测方法。该方法以YOLOv2目标检测方法为基础,利用参数迁移学习的MobileNetV2作为特征提取网络,简化了网络模型并提高了训练速度。预训练的MobileNetV2特征提取网络与YOLOv2目标检测网络结合构成口罩佩戴检测网络模型。本文收集并建立了1000张人脸佩戴口罩图片数据集对网络模型进行训练和测试。实验结果表明,与YOLOv2、SSD300模型相比,MobileNetV2-YOLOv2模型口罩佩戴检测平均准确率提高3.8%、2.7%,检测速度提升2.5倍和2.4倍。并且在光线不足和密集检测条件下,MobileNetV2-YOLOv2依然可以有效进行口罩佩戴检测,相较于R-CNN和Faster-RCNN具有更好的检测效果,体现了更强的鲁棒性。

    Abstract:

    In view of the small number of samples in the current wearing mask data set and the limited hardware conditions, this paper proposes a lightweight YOLOv2 mask wearing detection method based on transfer learning. Based on the YOLOv2 target detection method, this method uses the MobileNetV2 of parameter transfer learning as the feature extraction network, which simplifies the network model and improves the training speed. The pre trained MobileNetV2 feature extraction network and YOLOv2 target detection network are combined to form a mask wearing detection network model. This paper collects and establishes a data set of 1000 pictures of face wearing masks to train and test the network model. The experimental results show that compared with YOLOv2 and SSD300 models, the average accuracy of mask wearing detection of MobileNetV2-YOLOv2 model is improved by 3.8%, 2.7%, and the detection speed increased by 2.5 times and 2.4 times. Moreover, under the condition of insufficient light and dense detection, MobileNetV2-YOLOv2 can still effectively detect mask wearing, which has better detection effect and stronger robustness than R-CNN and Faster-RCNN.

    参考文献
    相似文献
    引证文献
引用本文

张烈平,李智浩,唐玉良.基于迁移学习的轻量化YOLOv2口罩佩戴检测方法[J].电子测量技术,2022,45(10):112-116

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-07
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知