基于IWOA-SVM的电路软故障诊断
DOI:
CSTR:
作者:
作者单位:

1.安徽理工大学电气与信息工程学院 淮南 232001; 2.安徽理工大学环境友好材料与职业健康研究院(芜湖),芜湖,241003

作者简介:

通讯作者:

中图分类号:

U226.8+1

基金项目:

安徽省重点研究与开发计划项目(202104g01020012);安徽理工大学环境友好材料与职业健康研究院研发专项基金资助项目(ALW2020YF18)资助


Circuit soft fault diagnosis based on IWOA-SVM
Author:
Affiliation:

1.School of Electrical and Information Engineering, Anhui University of Science & Technology, Huainan 232001, China; 2.Institute of Environment-friendly Materials and Occupational Health,Anhui University of Science and Technology, Wuhu 241003,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对DC-DC电路软故障诊断准确度不高的问题,提出了一种基于改进鲸鱼(IWOA)优化支持向量机(SVM)的电路软故障诊断方法。首先,对故障信号进行VMD提取特征向量;然后通过引用反馈机制来改善传统鲸鱼算法的全局搜索能力防止陷入局部最优,把线性因子改为非线性因子用来平衡全局搜索和局部开发能力来改进鲸鱼算法,以解决易陷入局部最优和局部开发能力低的问题。最后建立IWOA-SVM模型用来进行电路软故障诊断,最终对电路软故障诊断准确度不高的问题,实现了高效的诊断。根据故障诊断的结果表明,改进后的鲸鱼算法优化支持向量机相比本文对比的其他方法具有更好的诊断效果。故障识别准确率达到了99.1667%。

    Abstract:

    A circuit soft fault diagnosis method based on Improved Whale (IWOA) Optimized Support Vector Machine (SVM) is proposed to address the problem of DC-DC circuit soft fault diagnosis with low accuracy. First, a VMD is performed on the fault signal to extract the feature vectors. Then we improve the global search ability of the traditional whale algorithm to prevent falling into local optimum by referring to the feedback mechanism, and change the linear factor to a nonlinear factor to balance the global search and local exploitation ability to improve the whale algorithm to solve the problem of easily falling into local optimum and low local exploitation ability. Finally, the IWOA-SVM model is used for soft fault diagnosis of circuits, and finally, the problem of low accuracy of soft fault diagnosis of circuits is achieved with high efficiency. Based on the results of fault diagnosis, it is shown that the improved whale algorithm optimized support vector machine has better diagnosis effect compared with other methods compared in this paper. Fault recognition accuracy of 99.1667%.

    参考文献
    相似文献
    引证文献
引用本文

姜媛媛,牛牧原,陈万利.基于IWOA-SVM的电路软故障诊断[J].电子测量技术,2022,45(2):159-165

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-17
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知