基于CNN-LSTM混合神经网络模型的NOx排放预测
DOI:
CSTR:
作者:
作者单位:

河北建投能源科学技术研究院有限公司,石家庄市 050071

作者简介:

通讯作者:

中图分类号:

TK 223

基金项目:

2021年度石家庄重点研发计划项目(211060351A)资助


NOx emission forecasting based on CNN-LSTM hybrid neural network
Author:
Affiliation:

HCIG Energy Science and Technology Research Institute Co.,Ltd. (HCIG ETRI), Shijiazhuang 050071, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了充分挖掘电站锅炉NOx排放数据中时序性特征联系,提高NOx排放预测精度,提出一种基于卷积神经网络(CNN)和长短期记忆网络(LSTM)的NOx排放预测方法。以某300MW电站锅炉历史数据为样本,采用k-means聚类方法对NOx排放训练样本集进行分组,再基于CNN网络的卷积层和池化层提取NOx排放变量的高维映射关系,构造高维时序特征向量,将抽象化的特征集输入到LSTM网络,通过训练LSTM网络参数建立基于CNN-LSTM的NOx排放预测模型。通过某电站锅炉实际数据验证,所提预测模型对训练和测试样本的平均相对百分比误差分别为1.76%和3.85%,远低于其他模型。结果表明所提模型在预测精度和泛化能力方面具有显著优势。

    Abstract:

    In order to fully exploit the relationship between temporal features in NOx emission data and improve the accuracy of NOx emission forecasting results, this paper proposes a NOx emission forecasting method based on a hybrid neural network model of convolutional neural network (CNN) and long short-term memory network (LSTM). Taking the historical data of a 300MW coal-fired boiler as a sample, the k-means clustering method is used to group NOx emission sample sets. Then the high-dimensional mapping relationship of NOx emission variables is extracted based on the convolutional layer and pooling layer of the CNN network to construct a high-dimensional time series feature vector, which is input the LSTM network. A NOx emission prediction model is established based on CNN-LSTM by training LSTM network parameters. Through the actual data verification of coal-fired boiler, the Mean relative percentage error of the proposed prediction model for training and testing samples are 1.76% and 3.85%, respectively, which are much lower than other models. The results show that the proposed NOx emission prediction model has significant advantages in terms of prediction accuracy and generalization ability.

    参考文献
    相似文献
    引证文献
引用本文

邢红涛,郭江龙,刘书安,阎彬,杨一盈.基于CNN-LSTM混合神经网络模型的NOx排放预测[J].电子测量技术,2022,45(2):98-103

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-17
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知