车辆姿态感知注意力增强的车辆重识别
DOI:
CSTR:
作者:
作者单位:

上海工程技术大学 机械与汽车工程学院 上海 201620

作者简介:

通讯作者:

中图分类号:

TP391.41; U495

基金项目:


Enhanced Attention of Vehicle Posture Perception for Vehicle Re-identification
Author:
Affiliation:

School of Mechanical and Automotive Engineering, Shanghai University of Engineering Sciences, Shanghai 201620, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于不同道路监控视角下的车辆姿态不断变化,因此车辆重识别仍是智慧交通系统中一项具有挑战性的任务。现有的车辆重识别的方法大多数基于车辆的外观属性,但识别受光照和角度等因素影响导致识别效果较差。因此,本文设计了一种车辆姿态感知注意力增强网络以提高车辆在光照和角度等因素影响下的重识别效果。首先,将图片输入到卷积姿态网络中生成12个关键点重建车辆姿态信息,然后将输入图像车辆与目标图像车辆进行比较,提取出两辆车公共区域的特征;最后,计算车辆全局特征和局部特征之间的距离,并根据最终结果对识别结果进行排序。本文在Vehicle ID和VeRi776数据集上进行验证,实验结果表明,所提出的网络相较于其他模型top10的检测准确率提高了10%左右。

    Abstract:

    Owing to the continuous changes in vehicles under different road monitoring perspectives, vehicle re-identification is still a challenging task in intelligent traffic system. Most of the existing vehicle re-identification methods are based on the appearance attributes of the vehicle, but the recognition is affected by factors such as illumination and angle, which leads to poor recognition results. Therefore, this paper designs a vehicle posture perception attention enhancement network to improve the re-identification effect of vehicles under the influence of factors such as illumination and angle. First, input the image to the convolutional pose machine to generate 12 keypoints to reconstruct the vehicle frame, and then compare the input image vehicle with the target image vehicle to extract the features of the intersecting area between two images; Finally, the global distance and local loss of vehicle features are calculated, and the recognition results are sorted according to the final results. This paper verifies on vehicle ID and VeRi776 data sets. The experimental results prove that the Top10 detection accuracy of the proposed network is increased by about 10% than other models.

    参考文献
    相似文献
    引证文献
引用本文

朱肖磊,吴训成.车辆姿态感知注意力增强的车辆重识别[J].电子测量技术,2021,44(24):91-97

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-02
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知