基于深度对抗丢弃正则化的年龄估计
DOI:
CSTR:
作者:
作者单位:

1 南京信息工程大学 长望学院 南京市 210044; 2 南京信息工程大学 电子与信息工程学院 南京市 210044; 3 南京信息工程大学 人工智能学院(未来技术学院)南京市 210044

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

江苏省大学生创新训练重点项目(201910300044z),2019年第一批产学合作协同育人项目(201901134029)资助


Age estimation based on deep adversarial dropout regularization
Author:
Affiliation:

1 Changwang School of Honors, Nanjing University of Information Science and Technology, Nanjing 210044, China; 2 School of Electronics &Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; 3 School of Artificial Intelligence/School of Future Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    成年人面部变化非常缓慢,因此相邻年龄段的成人年龄估计仍是一个挑战。针对该问题,本文将对抗学习思想引入年龄估计任务,提出了基于深度对抗丢弃正则化的年龄估计模型。通过年龄特征学习器与判别器的对抗训练,提升年龄特征学习器对年龄段特征(特别是对相邻年龄段人脸年龄特征)的学习能力。在三个经典数据集(UTKFace、MORPH和Adience)上的实验显示,本文模型将UTKFace数据集的预测正确率由42.8%提升至81.6%,MORPH数据集的准确率由39.8%提升至69.8%,对Adience数据集的预测正确率为63.3%;和其它4个经典模型相比,本文模型仅用5层神经网络就达到了比深层神经网络更好的效果,特别中青年年龄段(15-53岁)年龄估计准确率比其他模型平均高出17.5%,说明本文模型对年龄估计任务性能有显著提升,有很好的实用价值。

    Abstract:

    For adults’ facial appearances changing slowly, the age estimation of adults in adjacent age groups is still a challenge. Aiming at this problem, this paper introduced the adversarial training method into the age estimation and proposed an age estimation method based on Adversarial Dropout Regularization(ADR). The age feature learner and the discriminator are trained via the adversarial training method, then the ability of age feature learning(especially the adjacent age groups features) gets improved. Experimental results on three classic datasets (UTKFace, MORPH and Adience) show that the proposed model improves the accuracy of UTKFace from 42.8% to 81.6%, and improves the accuracy of MORPH from 39.8% to 69.8%. Moreover, the accuracy of Adience is 63.3%. Being compared with other 4 classic models, the model in this paper using the neural networks of 5 layers achieves better results than other deep neural networks, and outperforms other methods with averagely 17.5% higher accuracy for the young and middle-aged(15-53 years old), which shows that our model improves the performance significantly on age estimation task, and has the practical value.

    参考文献
    相似文献
    引证文献
引用本文

朱 昱,樊 航,王鹏,马莞悦,周 媛.基于深度对抗丢弃正则化的年龄估计[J].电子测量技术,2022,45(1):145-152

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-19
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知