基于改进Faster R-CNN的小目标检测模型
DOI:
CSTR:
作者:
作者单位:

太原科技大学 计算机科学与技术学院 太原 030024

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

国家自然科学基金项目(61373099)资助


Small target detection model based on improved Faster R-CNN
Author:
Affiliation:

School of computer science and technology,Taiyuan University of Science and Technology, Taiyuan 030024, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对工业大尺寸图像中小目标检测的平均精度均值低的问题,提出了一种改进的Faster R-CNN-Tiny模型。首先采用特征金字塔结构来对二阶检测器Faster R-CNN进行改进,来增强特征的表达能力,同时增加小目标特征映射分辨率,提高预测精度;其次将原本ResNet结构的最后一块改变为可变形卷积,自动计算各点的偏移,从最合适的地方取特征进行卷积,用以加强对小目标区域的特征提取;最后在提取感兴趣区域特征的时候,引入了内容的上下文信息,提高小目标检测的准确率。在工业中具有代表性的卫星遥感UCAS-AOD数据集以及天池瓷砖表面瑕疵质检数据集上进行对比试验。结果表明,改进后的FRC-Tiny模型相比原模型,其检测的平均精度均值分别提高了5.57%和14.25%。

    Abstract:

    Aiming at the problem of low average precision of small target detection in industrial large-size images, an improved Faster R-CNN-Tiny model is proposed. Firstly, the feature pyramid structure is used to improve the second-order detector Faster R-CNN to enhance the feature expression capability and increase the resolution of small target feature mapping to improve the prediction accuracy; secondly, the last piece of the original ResNet structure is changed to deformable convolution to automatically calculate the offset of each point and take features from the most suitable place for convolution, which is used to enhance the small target region Finally, when extracting the features of the region of interest, the contextual information of the content is introduced to improve the accuracy of small target detection. The comparison tests are conducted on the representative satellite remote sensing UCAS-AOD dataset in industry and the quality inspection dataset of surface defects of tiles in Tianchi. The results show that the improved FRC-Tiny model improves the mean average precision of detection by 5.57% and 14.25%, respectively, compared with the original model.

    参考文献
    相似文献
    引证文献
引用本文

彭豪,李晓明.基于改进Faster R-CNN的小目标检测模型[J].电子测量技术,2021,44(24):122-127

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-02
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知