多种构图方式下的加密流量分类
DOI:
CSTR:
作者:
作者单位:

上海大学通信与信息工程学院 上海 200444

作者简介:

通讯作者:

中图分类号:

TP399

基金项目:


Classification of encrypted traffic based on multiple composition methods
Author:
Affiliation:

School of Communication and Information Engineering, Shanghai University, Shanghai 200444

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统网络流量分类方法难以区分使用VPN加密的网络流量,为了实现加密流量的分类,提出了一种基于多种构图方式的网络流量图像分类方法。研究了五种特殊的构图方式,将加密网络流量转换为流量图像,最后利用卷积神经网络进行分类。通过在自己采集的VPN加密流量数据集和ISCX VPN-nonVPN公开数据集上的实验结果表明,此加密流量分类方法的分类精度在两个数据集上分别达到90%以上与95%以上。对角型或瀑布型构图方式的分类精度较传统线型构图方式有1%左右的提升。特殊的构图方式能加强流量图像中像素点的相关性,增加流量图像中的图像特征,实现流量分类精度的提升。

    Abstract:

    Traditional network traffic classification methods are difficult to distinguish network traffic encrypted using VPN. In order to achieve classification of encrypted traffic, a network traffic image classification method based on multiple composition methods is proposed. Five special composition methods are studied to convert encrypted network traffic into traffic images, and finally convolutional neural networks are used to classify them. The experimental results on self-collected VPN encrypted traffic dataset and ISCX VPN-nonVPN public dataset show that the classification accuracy of this encrypted traffic classification method reaches more than 90% and 95% on the two datasets, respectively. The classification accuracy of diagonal or waterfall composition method has about 1% improvement over the traditional line composition method. The special composition method achieves the improvement of encrypted traffic classification accuracy by enhancing the correlation of pixel points in the traffic image and increasing the image features in the traffic image.

    参考文献
    相似文献
    引证文献
引用本文

朱文斌,马秀丽.多种构图方式下的加密流量分类[J].电子测量技术,2021,44(12):87-92

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-06
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知