基于HPSO-SVM的多传感器手语识别方法研究
DOI:
CSTR:
作者:
作者单位:

常州大学,微电子与控制工程学院,江苏常州213000

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:


Research on Multi-sensor Sign Language Recognition Method Based on HPSO-SVM
Author:
Affiliation:

School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高手语识别准确率,本文提出一种基于混合粒子群优化的支持向量机(Hybrid Particle swarm algorithm Support vector machine,HPSO-SVM)的多传感器手语识别方法。在原始数据采集阶段,利用ZTEMG-2000肌电传感器采集人体手臂表肌电信号、MPU6050传感器采集右手加速度和角速度信号;在数据处理阶段,增加一个自适应容错长度,提高了短时能量法提取活动段的精度;在分类方法阶段,通过混合粒子群算法(HPSO)寻找出支持向量机(SVM)的惩罚因子和核函数参数的最优组合,优化了SVM模型。实验上,对每名受试者分别执行的5种中国手语进行识别,平均识别率达到了96.78%。该方法利用数量较少的、经济实惠的传感器对手语进行识别,且识别准确率较传统SVM算法提高了5%,展现了该方法在手语识别上的优越性。

    Abstract:

    In order to improve the accuracy of sign language recognition, this paper proposes a multi-sensor sign language recognition method based on Hybrid Particle swarm algorithm Support vector machine (HPSO-SVM). In the raw data collection stage, the ZTEMG-2000 EMG sensor is used to collect the EMG signal of the human arm surface, and the MPU6050 sensor is used to collect the right-hand acceleration and angular velocity signals.In the pretreatment phase of the experiment, short-term energy method, optimized by altering the adaptive fault tolerance length, is introduced to improve the extraction accuracy of the active segment. in the classification method stage, the optimal combination of the penalty factor of the support vector machine (SVM) and the kernel function parameter is found through the hybrid particle swarm algorithm (HPSO), and the SVM model is optimized. In experiments, the five Chinese sign languages performed by each subject were recognized, and the average recognition rate reached 96.78%. This method uses a relatively small number of more economical sensors to recognize sign language, and the recognition accuracy is 5% higher than that of the traditional SVM algorithm, demonstrating the superiority of this method in sign language recognition.

    参考文献
    相似文献
    引证文献
引用本文

刘闯闯,朱正伟.基于HPSO-SVM的多传感器手语识别方法研究[J].电子测量技术,2021,44(10):57-65

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-23
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知