基于编解码器的组件式交通事故预测网络
DOI:
CSTR:
作者:
作者单位:

1. 上海大学 通信与信息工程学院 上海 200444;2. 上海大学 智慧城市研究院 上海 200444

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

中国博士后科学基金项目(2020M681264)、上海市科委港澳台科技合作基金项目(18510760300)资助


Component traffic accident prediction network based on codec
Author:
Affiliation:

1. School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China; 2. Institute of Smart City, Shanghai University, Shanghai 200444, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着道路机动车数量的不断增多,交通事故已成为危害社会公共安全的主要因素之一,道路交通事故的预测也成为了研究热点。考虑到事故影响因素的错综复杂性和事故发生具有动态的时空变化性与数据稀疏性等问题,通过对多源数据的融合并按照时变和时不变数据进行特征提取,特别加入事故的文本描述特征提取上下文信息,同时采用负采样法平衡正负样本比例,最终提出了一种多特征组件组合训练的区域交通事故预测网络模型。在美国的三个具有不同事故稀疏性的城市数据集上进行了模型验证,实验结果表明该预测模型在各项评价指标上都优于对比的基础模型,各项指标提升约2%3%,可以看出该模型在一定程度上提升了预测性能,同时通过多特征组件的不同组合实验结果说明各项因素对事故发生具有影响性。

    Abstract:

    With the continuous increase in the number of road vehicles, traffic accidents have become one of the main factors that endanger social public safety, and the prediction of road traffic accidents has also become a research hotspot.Taking into account the intricacies of accident influencing factors and the dynamic spatio-temporal variability and data sparseness of accidents, the fusion of multi-source data and the feature extraction according to time-varying and time-invariant data, especially the text description of the accident The feature extracts context information, and at the same time, the negative sampling method is used to balance the ratio of positive and negative samples.Finally, a regional traffic accident prediction network model trained by multi-feature component combination training is proposed. The model was validated on the data sets of three cities with different accident sparsity in the United States. The experimental results show that the prediction model is better than the basic model of comparison in various evaluation indicators, and each indicator is increased by about 2%3%. It can be seen that the model has improved the prediction performance to a certain extent. At the same time, the experimental results of different combinations of multi-feature components show that various factors have an impact on the occurrence of accidents.

    参考文献
    相似文献
    引证文献
引用本文

曾本冲,万旺根.基于编解码器的组件式交通事故预测网络[J].电子测量技术,2021,44(6):90-95

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-18
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知