基于阵列Taylor权的最优粒子初值估计法
DOI:
CSTR:
作者:
作者单位:

1.中航国际仿真科技服务有限公司 上海 201600; 2.空军哈尔滨飞行学院改装系 哈尔滨 150088

作者简介:

通讯作者:

中图分类号:

TN95、TN82、TP320

基金项目:

国家自然科学基金(61273095)


Optimum Particle’s Initial Values’ Estimation by Array’s Taylor Weights
Author:
Affiliation:

1. China AVIC International Simulation Technology and Service CO., Ltd, Shanghai 201600, China; 2. Department of Bomber and Transport Pilot Conversion, Air Force Harbin Flight Academy, Haerbin 150088, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    优化阵列天线方向图时,最优粒子初值的有效估计能极大改善粒子群优化算法(PSO)的收敛性,得到更好的全局最优解。本文提出了基于Taylor权的最优粒子初值估计法,即利用阵列Taylor权作为最优粒子初值的有效估计量来改善PSO算法的收敛特性。仿真实验评估随机权、Taylor权和解析权三种最优粒子初值估计法对PSO算法收敛特性的影响,结果表明,相对于随机权,Taylor权和解析权都能够有效的改善PSO算法收敛特性,且两种方法的性能比较接近。由于解析权必须对大型矩阵求广义逆,这种运算不但非常消耗计算资源,且对超大型矩阵甚至无法实现,而Taylor权初值估计法相对简单高效,因而在阵列天线方向图非线性优化时, Taylor权最优粒子初值估计法具有更好的算法实用性。

    Abstract:

    When particle swarm optimization (PSO) is adopted to optimize antenna array pattern, the optimizer’s convergence can be greatly improved by the efficient estimations of the optimum particle’s initial values, and some global optimal solutions better than usual can be obtained. By using the array’s Taylor weighting to estimate the optimum particle’s initial values, a new method is presented to improve PSO optimizer’s convergence. Comparisons are made between three methods of estimations, which are random weights, Taylor weights and analytic weights respectively, it can be said that Taylor weights and analytic weights are both effective to improve the PSO optimizer convergence relative to the random weights, and they both have similar performance. As the analytic weights only can be solved by performing large-scale matrix’s generalized inversion which is usually difficult and hardly afforded by common PC, while Taylor weights are relatively simple and easy to be calculated, the practicability of the latter is far better than the former.

    参考文献
    相似文献
    引证文献
引用本文

侴永斌,张树春,李德鑫,史毅夫,姜 巍.基于阵列Taylor权的最优粒子初值估计法[J].电子测量技术,2021,44(6):70-75

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-18
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知