基于GA-CNN的滚动轴承故障诊断
DOI:
CSTR:
作者:
作者单位:

青岛科技大学自动化与电子工程学院 青岛 266000

作者简介:

通讯作者:

中图分类号:

TH133.3;TP18

基金项目:


Fault diagnosis of rolling bearing based on GA-CNN
Author:
Affiliation:

College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao 266000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决滚动轴承故障诊断中人工选择卷积神经网络(Convolutional Neural Network, CNN)网络结构具有不确定性从而导致诊断准确率低的问题,以CNN为基础,本文提出一种应用遗传算法(Genetic Algorithm, GA)自适应选择CNN网络结构的滚动轴承故障诊断新方法GA-CNN。本文首先对滚动轴承故障信号进行特征提取,然后将故障特征分别输入经GA改进的CNN和三组人工随机选择网络结构的CNN进行特征识别,最后将实验结果进行对比得出结论。GA自动选择CNN网络最佳结构,避免了人工选择CNN网络结构具有的不确定性,从而减少参数选择所需时间并提高滚动轴承故障诊断准确率。实验验证表明本文提出的基于GA-CNN的滚动轴承故障诊断方法与人工随机选择CNN网络结构相比极大提高了故障诊断效率并具有更高的准确性。

    Abstract:

    In order to solve the problem that the artificial selection of the Convolutional Neural Network tructure in the rolling bearing fault diagnosis is uncertain and the diagnosis accuracy is low, based on the CNN, this paper proposes an applied Genetic Algorithm (GA) GA-CNN, a new method for fault diagnosis of rolling bearings that adaptively selects CNN network structure. This paper first uses Hilbert-Huang Transform (HHT) to extract features of rolling bearing fault signals, and then input the fault features into CNN improved by GA and three groups of CNN with artificially randomly selected network structures for feature recognition. Finally, a conclusion is drawn by comparing the experimental results. GA automatically selects the best structure of CNN network, avoiding the uncertainty of manual selection of CNN network structure, thereby reducing the time required for parameter selection and improving the accuracy of rolling bearing fault diagnosis. Experimental verification shows that the GA-CNN-based rolling bearing fault diagnosis method proposed in this paper greatly improves the efficiency of fault diagnosis and has higher accuracy compared with manual random selection of CNN network structure.

    参考文献
    相似文献
    引证文献
引用本文

李雪颖,刘慧明.基于GA-CNN的滚动轴承故障诊断[J].电子测量技术,2021,44(4):126-131

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-11-25
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知