基于深度学习的输电线挂接地线状态目标检测
DOI:
CSTR:
作者:
作者单位:

1 .贵州电网有限责任公司凯里供电局, 凯里 556000;2.东北电力大学,电气工程学院,吉林 132012

作者简介:

通讯作者:

中图分类号:

TM7

基金项目:

南方电网贵州电网有限责任公司凯里供电局重点科技项目(0608322018040105WZ10055);国家重点研发计划重大项目:OPLC施工、监测、检测、运行维护技术的设备与标准(2016YFB0901204)


State Target Detection of Transmission Line Grounding Wire Based on Deep Learning
Author:
Affiliation:

1.Guizhou Power Co., Ltd. Kaili Power Supply Bureab, Kaili 556000, China; 2. Electrical Engineering College,Northeast Electric Power University, Jilin 132012, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对输电线路挂接临时接地线时用手持设备获取的图像存在接地线区域占比小、间隔近、不易精准识别的现场实际问题,本文提出了采用改进Faster R-CNN法实现接地线目标识别的解决办法。通过在原始Faster R-CNN方法的基础上将卷积网络的低层和高层特征图均送入RPN中实现多尺度目标检测,并对非极大值抑制进行改进,将改进后的模型移植至手持数据采集设备。经仿真验证及现场试运行测得接地线的检测精度达到94.8%,比原始方法提高了7.5%,表明所提出方法可有效提升目标识别整体性能。

    Abstract:

    In view of the practical problems of small proportion and close interval and difficult to identify accurately of ground wire area in the images obtained by handheld devices when the temporary ground wire is attached to the transmission line, this paper proposes an improved Faster R-CNN method to realize ground wire target recognition. the low- and high-level feature maps of the convolutional network are fed into the RPN on the basis of the original Faster R-CNN method to achieve multi-scale target detection, and the non-maximum suppression is improved. The improved model is transplanted to the handheld data acquisition device. Through simulation and field test, the detection accuracy of grounding wire is 94.8%, which is 7.5% higher than the original method. It shows that the proposed method can effectively improve the overall performance of target recognition.

    参考文献
    相似文献
    引证文献
引用本文

丁志敏,邢晓敏,董行,陈 舸,蒋德州.基于深度学习的输电线挂接地线状态目标检测[J].电子测量技术,2021,44(3):132-137

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-19
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知