基于小波包和AFSA-SVM的电机故障诊断
DOI:
CSTR:
作者:
作者单位:

安徽理工大学,淮南,232000

作者简介:

通讯作者:

中图分类号:

TH133.33

基金项目:


Motor fault diagnosis based on wavelet packet and AFSA-SVM
Author:
Affiliation:

Anhui University of Science And Technology,Huainan,232000

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对电机滚动轴承故障诊断准确率问题,提出基于小波包分析结合人工鱼(AFSA)优化支持向量机(SVM)的电机故障诊断方法。利用小波包多分辨率分析法对电机的震动信号进行多层分解及重构,得到不同频段的信号时频图;然后采用AFSA算法对支持向量机中的参数惩罚参数(C)和核参数()进行寻优选择,并最终建立AFSA-SVM故障诊断模型,提取信号时频图中频带能量值作为AFSA-SVM的输入特征向量进行学习、测试。最后通过仿真实验验证,故障诊断准确率达98.7%,并与粒子群算法优化支持向量机(PSO-SVM)和未经优化的支持向量机对比分析,结果表明此方法具有更高的故障诊断识别效果。

    Abstract:

    Aiming at the problem of motor rolling bearing fault diagnosis accuracy, a motor fault diagnosis method based on wavelet packet analysis and artificial fish (AFSA) optimized support vector machine (SVM) was proposed. Wavelet packet multi-resolution analysis method was used to decompose and reconstruct the motor vibration signals, and the time-frequency diagrams of different frequency bands were obtained. Then, AFSA algorithm is used to optimize the parameter penalty parameter(C) and kernel parameter() in the support vector machine. Finally, the fault diagnosis model of AFSA-SVM is established, and the frequency band energy value in the signal time-frequency graph is extracted as the input feature vector of AFSA-SVM for learning and testing. Finally, the simulation experiment verifies that the fault diagnosis accuracy is up to 98.7%, and compared with the particle swarm optimization support vector machine (PSO-SVM) and the unoptimized support vector machine, the results show that the proposed method has a higher fault diagnosis and recognition effect.

    参考文献
    相似文献
    引证文献
引用本文

胡业林,代斌,宋晓.基于小波包和AFSA-SVM的电机故障诊断[J].电子测量技术,2021,44(2):48-55

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-19
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知