基于注意力机制的CNN人脸表情识别
DOI:
CSTR:
作者:
作者单位:

青岛科技大学 自动化与电子工程学院,山东 青岛 266061

作者简介:

通讯作者:

中图分类号:

TP391.9

基金项目:

国家海洋局重大专项项目 (国海科字[2016]494号No.30)


CNN facial expression recognition based on attention mechanism
Author:
Affiliation:

College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao; 266061, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    人脸表情识别在人机交互、情感计算等计算机视觉领域具有十分重要的应用前景。针对人脸表情识别的复杂性、多样性、遮挡性、光照等方面的挑战,提出了一种新的端到端网路,并将注意力力机制应用于表情自动识别。新的网络体系结构由特征提取模块、注意力模块、重构模块和分类模块四部分组成。通过LBP特征提取图像纹理信息,捕捉人脸的微小运动,提高网络性能。注意力机制可以使神经网络更加关注有用的特征,并结合LBP特征和注意力机制对注意力模型进行改进,提高识别精度。将新提出的方法应用于三个代表性的数据集,即JAFFE、CK+和FER2013,实验结果表明在三个数据集上人脸表情识别精度分别达到了98.95%、98.95%和79.89%,证明该方法利于提高人脸表情的识别率,具有一定的先进性。

    Abstract:

    Facial expression recognition has a very important application prospect in computer vision fields such as human-computer interaction and emotion calculation. Aiming at the challenges of complexity, diversity, occlusion and illumination of facial expression recognition, a new end-to-end network is proposed, and attention mechanism is applied to automatic expression recognition. The new network architecture consists of four parts: feature extraction module, attention module, reconstruction module and classification module. By extracting image texture information from LBP features, the tiny motion of face is captured and the network performance is improved. attention mechanisms can make neural networks pay more attention to useful features. we combine LBP features and attention mechanisms to improve the attention model to improve the recognition accuracy. applying the newly proposed method to two representative expression datasets, namely JAFFE、CK、FER2013 and. the experimental results show that the accuracy of facial expression recognition on three data sets is 98.95%,98.95% and 79.89%, respectively. It is proved that the method is beneficial to improve the recognition rate of facial expression and is advanced.

    参考文献
    相似文献
    引证文献
引用本文

程换新,成凯,蒋泽芹.基于注意力机制的CNN人脸表情识别[J].电子测量技术,2021,44(10):128-132

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-23
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知