基于功能性近红外光谱识别步行想象研究
DOI:
CSTR:
作者:
作者单位:

昆明理工大学信息工程与自动化学院 昆明 650500

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:


Research on Recognizing Walking Imagery Based on functional near-infrared spectroscopy
Author:
Affiliation:

Institute of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    脑机接口是一种变革型的人机交互,基于脑电的脑机接口占到研究的大多数,而基于功能性近红外光谱(fNIRS)的脑机接口以其特有的优势开始受到研究者重视。本研究利用fNIRS测量了15名被试在步行想象和空闲状态期间的氧合血红蛋白(HbO)浓度,对HbO信号进行带通滤波和基线漂移矫正。然后提取HbO的均值、峰值和均方根及其组合作为分类特征,最后采用SVM、KNN和LDA进行分类,并测试了任务期间不同时间窗的分类性能。实验结果表明,采用SVM提取三种组合特征的分类准确率明显高于其他特征及分类器,达到了90.374.42%;2~8s时间窗比其他时间窗的分类准确率更高。本研究有望为步行功能障碍患者提供一种新的可选的主动康复训练方法。

    Abstract:

    Brain-computer interface is a transformative human-computer interaction. Brain-computer interfaces based on EEG account for most of the research, and functional near-infrared spectroscopy based brain-computer interfaces are beginning to be valued by researchers because of their unique advantages. In the study, fNIRS was used to measure the oxygenated hemoglobin (HbO) concentration of 15 subjects during walking imagery and idle state, and to perform band-pass filtering and baseline drift correction of HbO signals. Then we extracted the mean, peak, root-mean-square and their combinations of HbO as classification features, and finally used SVM, KNN and LDA for classification, and tested the classification performance of different time windows during the task. The experimental results show that the classification accuracy of the three combined features extracted by SVM is significantly higher than other features and classifiers, reaching 90.374.42%; the classification accuracy of the 2~8s time window is higher than that of other time windows. This study is expected to provide a new alternative active rehabilitation training method for patients with walking dysfunction.

    参考文献
    相似文献
    引证文献
引用本文

李红权,程昭立,王发旺.基于功能性近红外光谱识别步行想象研究[J].电子测量技术,2021,44(1):161-164

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-31
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告