基于SoC的卷积神经网络系统设计
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP919;TN7

基金项目:

广东省科技项目(2017B090909004)资助


Design of convolutional neural network system based on SoC
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近些年,卷积神经网络(CNN)出色地完成了许多机器视觉任务。但现有的软件实施方案无法很好地在便携式设备中实现,为此设计一种基于Xilinx 全可编程SoC的CNN系统,在固定资源的SoC平台下,只需较少资源即可实现快速的检测系统。系统实现多级流水线和输入数据复用的方法提高计算效率。系统硬件部分实现CNN计算,软件实现图片预处理及图片检测后处理,从而提高运行效率,系统可实现多种卷核的卷积操作,平均值池化,非极大值抑制抑制算法,实现图片中多人脸的准确定位。实验结果表明,在100 MHz的工作频率下,系统的平均计算速率为0.19 Gops/s,功耗仅为通用CPU的4.07%。

    Abstract:

    In recent years, convolutional neural networks have done a great job in many machine vision tasks. However, existing software implementations are not well implemented in portable devices. A convolutional neural network system based on Xilinx all-programmable SoC is designed to accelerate the convolutional operation in parallel, which only need few design resource and implement fast detection system. The system uses multi-stage pipeline technology and input data reuse to improve calculation efficiency. The hardware part completes convolutional network calculation, and the software part finish the image preprocessing and post-image detection preprocessing, thereby improving operation efficiency. The system can implements the convolution operation with different size, mean pooling operation and the non-maximum suppression algorithm, which achieves accurate positioning of multiple faces in the picture. The experimental results show that the average calculation rate of the system is 0.19 Gops/s at the operating frequency of 100 MHz,and the power consumption is only 4.07% of the general purpose CPU.

    参考文献
    相似文献
    引证文献
引用本文

李子聪,曾宇航,熊晓明.基于SoC的卷积神经网络系统设计[J].电子测量技术,2019,42(10):126-131

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-09-18
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知