群智能优化算法优化支持向量机的方法及应用
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN98

基金项目:


Method and application of swarm intelligence optimization algorithm for support vector machine optimization
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    水质评价过程具有多变量、非线性、不确定等特点,传统的粒子群算法训练神经网络的水质评价模型收敛速度慢、泛化性能差。为了克服传统模型的缺点,提出了利用动态多种群粒子群算法训练支持向量机的模型,并利用多种群粒子群算法优化支持向量机结构参数。该模型结合了粒子群算法的搜索性能以及支持向量机的高效性、强鲁棒性等优点,提高了模型的泛化能力。通过对新疆某流域站点的水文数据进行仿真,结果得出该方法的相对误差为2.74%,远低于传统粒子群算法4.21%的相对误差,由此证明该模型的应用效率及精度得到提高,适用于日常水质评价工作。

    Abstract:

    The process of water quality assessment is multivariable, nonlinear and uncertain. The traditional particle swarm optimization training neural network water quality evaluation model has slow convergence speed and poor generalization performance. In order to overcome the shortcomings, this paper proposes a new model to use dynamic multigroup particle swarm optimization algorithm to train support vector machine, in which the DMPSO is used to optimize the parameters of the fuzzy neural network model. The model combines the search performance of PSO algorithm, the efficiency and robustness of SVM, which can improve the generalization ability of the model. Through the simulation experiment on the hydrological data, the results show that the relative error of this model is 2.74%, which is much lower than the 4.21% relative error of the traditional particle swarm optimization. It is proved that the efficiency and accuracy of the model are improved, and is suitable for the daily water quality evaluation.

    参考文献
    相似文献
    引证文献
引用本文

崔丽洁,程换新,刘军亮,张远绪.群智能优化算法优化支持向量机的方法及应用[J].电子测量技术,2019,42(7):44-48

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-08-09
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知