基于IoT的电池组云管理装置设计
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM912;TP315;TN710

基金项目:

上海市青年扬帆计划 (18YF1418300)资助项目


Design of the cloud-management device about the battery group based on IoT
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为满足实时监控电池组状态、优化控制策略、延长电池组寿命和保证使用安全等要求,提出并实现了一种采用优化的剩余电量(SoC)估计的电池组云管理系统。在传统的SoC估计策略——电荷累计法和开路电压法的基础上,融合了扩展卡尔曼滤波算法,提高了电池组的剩余电量估计的精度,并建立了电池电压与SoC之间的数学模型。同时,在此基础上加入了云服务器系统,实现了电池组的实时检测。此外,设计并实现了一款容量为22.2 V的电池组管理装置。实验结果表明,该电池组云管理装置的SoC估计精度高、测量误差低于1%、系统稳定性好,满足实时检测电池组状态的要求。

    Abstract:

    In order to meet the requirements of real-time monitoring aboutstates of battery group, optimizing control strategy, prolonging battery life and ensuring the safety of use, this paper proposed and implemented a battery pack cloud management system using optimized residual power (SoC) estimation.Based on the traditional SoC estimated strategy (charge accumulating method and open circuit voltage), the extended calman filter algorithm wascombined to improve the accuracy of battery pack’s remaining power estimation, and the mathematical model between the battery voltage and the SoC was established.At the same time, the cloud-server system was added to realize the real-time detection of the battery group. In addition, a battery pack management device with a capacity of 22.2 V was designed and implemented. The experimental results show that the SoC estimation accuracy of the battery management deviceis high, the measurement error is less than 1%, the system stability is good, and the requirements for real-time detection of the battery state are met.

    参考文献
    相似文献
    引证文献
引用本文

陈昂辉,夏鲲,李峥,李洪恩,徐敬俊,陈扬飞.基于IoT的电池组云管理装置设计[J].电子测量技术,2019,42(4):6-13

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-07-26
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知